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Abstract

A two-level optimization procedure for determining elastic constants E1, E2, G12, and n12 of laminated composite materials using

measured axial and lateral strains of two symmetric angle-ply beams with different fiber angles subjected to three-point-bending testing is

presented. In the first-level optimization process, the theoretically and experimentally predicted axial and lateral strains of a [(451/

�451)6]s beam are used to construct the strain discrepancy function which is a measure of the sum of the squared differences between the

experimental and theoretical predictions of the axial and lateral strains. The identification of the material constants is then formulated as

a constrained minimization problem in which the best estimates of shear modulus and Poisson’s ratio of the beam are determined to

make the strain discrepancy function a global minimum. In the second-level optimization process, shear modulus and Poisson’s ratio

determined in the first level of optimization are kept constant and Young’s moduli of the second angle-ply beam with fiber angles

different from 451 are identified by minimizing the strain discrepancy function established at this level of optimization. The suitability of

the proposed procedure for material characterization of composite materials has been demonstrated by means of a number of examples.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Material constants determination is an important
process in the design or quality assurance of laminated
composite parts. The attainment of actual material
constants can help predict realistic mechanical behaviors
or perform reasonable integrity assessments of the lami-
nated composite parts. In determining the material
constants, three laminated composite specimens with
different fiber angles subjected to static tensile testing are
generally used to determine elastic constants E1, E2, G12,
and n12 of the laminated composite specimens. According
to the ASTM standards of D3039/3039M and D3518/
3518M, two specimens with 01 and 901 fiber angles are used
to determine E1, n12, and E2 while a 451 specimen is
required to determine G12. The preparation of laminated
composite specimens and testing of the specimens are
e front matter r 2007 Elsevier Ltd. All rights reserved.
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usually time consuming and tedious. To shorten the time
for material preparation and simplify the material testing
process, it has thus long been desired to have a simple yet
effective procedure for elastic constants determination of
composite materials. In recent years, many researchers
have proposed different techniques to identify the structur-
al or material properties of structures using various
measured structural response data. For instance, Berman
and Nagy [1] developed a method that used measured
normal modes and natural frequencies to improve an
analytical mass and stiffness matrix model of a structure.
Kam and his associates [2,3] developed methods to identify
the element bending stiffnesses of beam structures using
measured natural frequencies and mode shapes or dis-
placements alone. A number of researchers developed
different combined numerical/experimental methods in
which 10–16 experimental eigen frequencies were used to
identify elastic properties of laminated composites [4–9].
Wang and Kam [10] proposed a constrained minimization
method to identify five material constants of shear-
deformable laminated composite plates using measured
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Nomenclature

dij ði; j ¼ x; y; sÞ bending compliance coefficients
Dij bending stiffness coefficients
e error function
E1, E2 Young’s moduli in fiber and matrix directions
F applied load
G12 shear modulus in the 1–2 plane
h beam thickness
L beam length
Mx, My, Mz moment resultant
Q
ðmÞ

ij ði; j ¼ x; y; sÞ the transformed reduced stiffness of
the mth layer

w beam width
x design variables

~x modified design variables

Greek letters

ai normalization factors
ex, ey, gxy axial, lateral, and shear strains
kx; ky; kxy curvatures in the x-direction, y-direction,

and x–y plane
mj, Zj, rp multipliers
m0j , Z

0
j , r0p, g0, rmax

p parameters
nij Poisson’s ratio
x amplification factor
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strains and/or displacements. Shin and Pande [11] devel-
oped a neural network method to identify the elastic
constants of orthotropic materials. Marin et al. [12] used
the boundary element method and the strain/displacement
measurements on the boundary to identify the elastic
constants of isotropic materials.

In the previous study [13], the authors have used three
measured strains of a symmetric angle-ply beam subjected
to three-point bending to identify elastic constants E1, E2,
G12, and n12 of the composite beam. Although the
previously proposed method is simple and easy to use,
the percentage error of the identified E1 may exceed 6%. In
this paper, an improved procedure established on the basis
of a two-level optimization method is presented for
material characterization of composites using two sym-
metric angle-ply beams with different fiber angles subjected
to three-point bending. In the proposed procedure,
experimental axial and lateral strains of the symmetric
angle-ply beams are used to construct two different strain
discrepancy functions which are measures of the sums of
the squared differences between the experimental and
theoretical predictions of the axial and lateral strains of
the beams for, respectively, the two levels of optimization,
and a multi-start global minimization technique is used to
identify material constants G12 and n12 at the first-level
optimization and material constants E1 and E2 at the
second-level optimization by minimizing the strain dis-
crepancy functions. The accuracy and feasibility of the
proposed procedure are demonstrated by means of several
examples on the material constants identification of
symmetric angle-ply beams made of different composite
materials.

2. Strain analysis of symmetric angle-ply beam

Consider a symmetric angle-ply beam of size L� h�w

subjected to three-point bending. Let the neutral axis of the
beam coincide with the x-axis. The bending moment
resultants at the mid-span of the beam determined from
the equilibrium conditions of the beam are

Mx ¼
FL

4w
; My ¼ 0 and Mz ¼ 0, (1)

where Mx, My, and Mz are moment resultants; F is the
applied line load acting across the width at the mid-span of
the beam; w is beam width; L is beam length. Based on the
narrow beam theory [14], the relations between the
moment resultants and curvatures for the composite beam
can be expressed as

Mx

0

0

8><
>:

9>=
>; ¼

Dxx Dxy Dxs

Dyx Dyy Dys

Dsx Dsy Dss

2
64

3
75

kx

ky

kxy

8><
>:

9>=
>;, (2)

where kx, ky, and kxy are curvatures in the x-direction, y-
direction, and x–y plane, respectively. The bending stiffness
coefficients Dij are expressed as

Dij ¼

Z h=2

�h=2
Q
ðmÞ

ij z2 dz ði; j ¼ x; y; sÞ, (3)

where h is the thickness of the composite beam; Q
ðmÞ

ij ði; j ¼
x; y; sÞ are the transformed reduced stiffnesses of the mth
layer with an arbitrary fiber angle; z is the axis in the
thickness direction. For an orthotropic lamina, the
untransformed reduced stiffnesses are expressed as

Q ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75 (4)

with

Q11 ¼
E1

1� n12n21
; Q22 ¼

E2

1� n12n21
,

Q12 ¼ Q21 ¼
n21E1

1� n12n21
¼

n12E2

1� n12n21
,

Q66 ¼ G12, ð5Þ

where E1, E2 are Young’s moduli in fiber and transverse
directions, respectively; nij is Poisson’s ratio for transverse
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strain in the j-direction when stressed in the i-direction; G12

is shear modulus in the 1–2 plane. The relations between
Qij and Qij can be found in the literature [14]. The inversion
of Eq. (2) gives

kx

ky

kxy

8><
>:

9>=
>; ¼

dxx dxy dxs

dyx dyy dys

dsx dsy dss

2
64

3
75

Mx

0

0

8><
>:

9>=
>;, (6)

where dij ði; j ¼ x; y; sÞ are bending compliance coefficients.
In view of Eqs. (1) and (6), the strains on the bottom
surface at the mid-span of the beam obtained from the
strain–curvature relations are

�x ¼
FLhdxx

8w
, (7a)

�y ¼
FLhdxy

8w
, (7b)

gxy ¼
FLhdsx

8w
, (7c)

where ex, ey, and gxy are the axial, lateral, and shear strains,
respectively.

It is noted that the strains can be determined directly
from the above equations when the material constants of
the composite beam are available. In an inverse problem,
the material constants, however, are unknown and need to
be identified from a given set of strains. Since in practice it
is much easier and more accurate to measure normal
strains ex and ey than shear strain gxy, it is thus attempted
to determine the material constants from Eqs. (7a) and (7b)
using two pairs of measured axial and lateral strains (ex, ey)
obtained from two symmetric angle-ply beams with
different fiber angles. Herein, a two-level optimization
procedure is presented to tackle this problem of material
constants identification.

It is worth pointing out here that the symmetric
angle-ply beam in Fig. 1 when subjected to three-point
bending will have lift-off type displacements at the two
supporting ends of the beam. Though the narrow beam
theory does not take the end lift-offs into consideration,
detailed finite element analyses with the consideration of
end lift-offs for the symmetric angle-ply beams with
Fig. 1. Dimensions of composite beam specimen.
different fiber angles using SHELL 99 element of the
commercial code ANSYS have shown that the strains
obtained from Eqs. (7) with errors less than 3% are found
to be acceptable for the beams with widths smaller than or
equal to 12mm.
3. Identification of material constants

The problem of material constants identification of
symmetric angle-ply beams is formulated as a minimization
problem. Two pairs of measured axial and lateral strains
obtained from two symmetric angle-ply beams with
different fiber angles are used to identify four elastic
constants of the composite beams in the following
minimization problem:

minimize eðxÞ ¼
P2
i¼1

½ð��xi � �xiÞ
2
þ ð��yi � �yiÞ

2
�

subject to xLp xpxU;

(8)

where eðxÞ is a strain discrepancy function measuring the
sum of the squared differences between the predicted and
measured strains; x ¼ ½E1;E2;G12; n12�, the vector contain-
ing material constants; ��xi, ��yi are, respectively, the
measured axial and lateral strains of the ith composite
beam; �xi, �yi are, respectively, the predicted axial and
lateral strains of the ith composite beam; xL, xU are,
respectively, the lower and upper bounds of the elastic
constants. It is noted that the direct solution of the above
one-level optimization problem using any of the conven-
tional optimization techniques may encounter great diffi-
culty in producing acceptable results. Furthermore, as
will be shown, the identified material constants obtained
from the direct solution of the above one-level optimiza-
tion problem are very sensitive to the variations of the
strains and thus may become erroneous even when the
variations of the measured strains are small. Since the
existence of noise-induced variations in measured strains is
inevitable, the determination of accurate material constants
directly from the above material constants identification
problem may become impossible. To tackle this difficulty,
herein a two-level optimization procedure is proposed
to solve the minimization problem of Eq. (8). In the
proposed procedure, the first-level optimization problem is
expressed as

minimize eðx1Þ ¼ ½ð�
�
x1 � �x1Þ

2
þ ð��y1 � �y1Þ

2
� � x

subject to xL
1ipx1ipxU

1i ; i ¼ 124;
(9)

where eðx1Þ is the first-level strain discrepancy function
measuring the sum of the squared differences between the
theoretical and experimental strains of the first composite
beam; x1 ¼ ½E

ð1Þ
1 ;E

ð1Þ
2 ;G

ð1Þ
12 ; n

ð1Þ
12 �, the vector containing the

material constants considered at the first level with
x11 ¼ E

ð1Þ
1 , x12 ¼ E

ð1Þ
2 , x13 ¼ G

ð1Þ
12 , and x14 ¼ nð1Þ12 ; �

�
x1 and

��y1 are the measured axial and lateral strains of the first
composite beam, respectively. xL

1i, xU
1i are the lower and
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upper bounds of the material constants, respectively; �x1,
�y1 are the theoretical strains determined in the strain
analysis of the first composite beam using the trial values
of the material constants; x is an amplification factor which
is used to increase the sensitivity of and avoid the
occurrence of numerical under-flow of the strain discre-
pancy function. A detailed numerical study has shown that
for strains of graphite/epoxy or glass/epoxy symmetric
angle-ply beams in the range from 10�3 to 10�5, the
value of x is best chosen in the range from 105 to 107. The
above constrained minimization problem of Eq. (9) is
first converted into an unconstrained minimization pro-
blem by creating the following general augmented
Lagrangian [15]

C̄1ð ~x1; m; Z; rpÞ ¼ eð ~x1Þ þ
X4
j¼1

½mjzj þ rpz2j þ Zjfj þ rpf
2
j �

(10)

with

zj ¼ max gjð ~x1jÞ;
�mj

2rp

� �
,

gjð ~xjÞ ¼ ~x1j � ~xU
1jp0,

fj ¼ max Hjð ~x1jÞ;
�Zj

2rp

� �
,

Hjð ~xjÞ ¼ ~xL
1j � ~x1jp0; j ¼ 124, ð11Þ

where mj, Zj, rp are multipliers; max [*,*] takes on the
maximum value of the numbers in the bracket. The
modified design variables ~x1 are defined as

~x1 ¼
E
ð1Þ
1

a1
;
E
ð1Þ
2

a2
;
G
ð1Þ
12

a3
;
nð1Þ12
a4

" #
, (12)

where ai are normalization factors used to adjust the
magnitudes of the design variables. It is worth noting
that the large differences among the values of the four
material constants make the gradients of the strain
discrepancy function with respect to E1, E2, and G12

much larger than that with respect to n12. Therefore, in
searching for the solution, the search direction will be so
significantly dominated by the gradients of the strain
discrepancy function with respect to E1, E2, and G12

that the solution may have great difficulty to converge.
Herein, the normalization factors ai are used to prevent E1,
E2, and G12 from dominating the search direction
of the solution and at the same time make the modified
design variables have appropriate contributions to the
search direction. A sensitivity study has shown that
the solution of the above minimization problem can
have excellent convergence rate if the normalization
factors are chosen in such a way that they make the
modified design variables less than 10 and greater than 0. It
is noted that the modified design variables ~x1 are only used
in the minimization algorithm while the original design
variables x1 are used in the strain analysis of the composite
beam. The updated formulas for the multipliers mj, Zj,
and rp are

mnþ1
j ¼ mn

j þ 2rn
pzn

j ,

Znþ1
j ¼ Zn

j þ 2rn
pf

n
j ; j ¼ 124,

rnþ1
p ¼

g0rn
p if rnþ1

p ormax
p ;

rmax
p if rnþ1

p Xrmax
p ;

8<
: ð13Þ

where the superscript n denotes iteration number; g0 is a
constant; rmax

p is the maximum value of rp. Following the
guideline given in the literature [15], the parameters m0j , Z

0
j ,

r0p, g0 and rmax
p are chosen as

m0j ¼ 1:0; Z0j ¼ 1:0; j ¼ 124,

g0 ¼ 2:5; rmax
p ¼ 100; r0p ¼ 0:4. ð14Þ

The constrained minimization problem of Eq. (9) has
thus become the solution of the following unconstrained
optimization problem:

minimize C̄ð ~x1;m; Z; rpÞ. (15)

The solution of the above unconstrained optimization
problem is straightforward by using the previously
proposed unconstrained multi-start stochastic global mini-
mization algorithm [16]. In the minimization process, a
series of starting points for the modified design variables of
Eq. (12) are selected at random from the region of interest.
The lowest local minimum along the search trajectory
initiated from each starting point is determined and
recorded. A Bayesian argument is then used to establish
the probability of the current overall minimum value of the
objective function being the global minimum, given the
number of starts and the number of times this value has
been achieved. The multi-start optimization procedure is
terminated once the condition that a target probability,
typically 0.998, has been exceeded is satisfied. The
estimates of the material constants G12 and n12 determined
at this level of minimization are treated as the true values
and thus kept constant in the second-level minimization
problem which is expressed as

minimize eðx2Þ ¼ ½ð�
�
x2 � �x2Þ

2
þ ð��y2 � �y2Þ

2
� � x

subject to xL
2ipx2ipxU

2i ; i ¼ 1� 2;
(16)

where x2 ¼ ½E
ð2Þ
1 ;E

ð2Þ
2 � the vector containing the material

constants considered at the second level with x21 ¼ E
ð2Þ
1 and

x22 ¼ E
ð2Þ
2 ; ��x2 and ��y2 are the measured axial and lateral

strains of the second composite beam, respectively; �x2, �y2

are, respectively, the theoretical axial and lateral strains
determined in the strain analysis of the second composite
beam using the trial values of E1 and E2. Again the above
second-level minimization problem is solved using the same
optimization technique as described in the first-level
minimization problem.
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4. Experimental investigation

A number of graphite/epoxy symmetric angle-ply beams
with layups [(451/�451)6]s and [(601/�601)6]s and the
dimensions shown in Fig. 1 were fabricated for the
experimental study of the material constants identification
of laminated composite materials. The material constants
of the graphite/epoxy lamina were first determined using
three types of the standard specimens in accordance with
the ASTM standards of D3039 and D3518 and their
average values and coefficients of variation (C.O.V.s) are
given as follows:

E1 ¼ 146:5GPa ð0:7%Þ,

E2 ¼ 9:22GPa ð1:2%Þ,

G12 ¼ 6:84GPa ð3:2%Þ,

n12 ¼ 0:3 ð0:19%Þ. ð17Þ

The values in the above parentheses denote C.O.V.s. The
composite beams comprised 24 laminae in which each
lamina was 0.12mm thick. The strains of the composite
beams with different fiber angles predicted in the strain
analyses of the beams using the actual values of the
material constants in Eq. (17) are listed in Table 1 for
future comparison. The [(451/�451)6]s and [(601/�601)6]s
composite beams were subjected to three-point-bending
tests in which two strain gages were used to measure the
axial and lateral strains on the bottom surface at the mid-
span of each of the composite beams. The strain gages
produced by KYOWA, Japan had 3mm gage length and
Table 1

Actual strains of the graphite/epoxy [(y1/�y1)6]s beams subjected to

F ¼ 3N

Fiber angle y Strain

ex (10�4) ey (10�4)

[(151/�151)6]s 0.7577 �0.7303

[(301/�301)6]s 1.597 �1.999

[(451/�451)6]s 3.869 �2.740

[(601/�601)6]s 6.922 �1.999

Table 2

Statistics of measured strains of the graphite/epoxy [(y1/�y1)6]s beam subject

Fiber angle y ��x (10�4)

Specimen no. Measured Average C.O

[(451/�451)6]s 1 3.879 (+0.3%)a 3.880 (+0.3%) 0.9%

2 3.844 (�0.6%)

3 3.916 (+1.2%)

[(601/�601)6]s 1 7.045 (+1.8%) 7.081 (+2.3%) 1.3%

2 7.188 (+3.8%)

3 7.009 (+1.3%)

aValue in parentheses denotes the percentage difference between actual and
2.0771.0 gage factor. In the three-point-bending testing of
the beams, the loading speed of the blade-like load
applicator which had line contact with each beam was set
as 0.02mm/s. Three specimens of each beam type were
tested and the load–strain relations of the specimens were
constructed to produce the strain statistics for the
identification of material constants. The measured strains
together with their average values and C.O.V.s of the
composite beams subjected to F ¼ 3N are listed in Table 2.
It is noted that the C.O.V.s of the measured strains are less
than or equal to 1.5%. The differences between the actual
and the experimentally determined strains are less than or
equal to 5.4%. The experimental strains will then be used
in the present method to identify the material constants of
the composite beams.

5. Sensitivity analysis

In practice, the existence of measurement noise is
inevitable and such noise usually makes the measured
strains behave like random variables of which the effects on
the identified elastic constants can be studied via a
probabilistic approach. Herein, an approximate analysis
in the field of probability [17] is used to investigate the
effects of the variations in measured strains on the accuracy
of the identified elastic constants. To be conservative, the
strains assumed to be measured independently can be
treated as independent random variables. Let ðY i;siÞ be the
expected value and standard deviation pair of measured
strain Yi. The elastic constants identified at each level of
optimization can then be expressed as

X i ¼ GiðY 1;Y 2Þ; i ¼ 1; 2. (18)

The expansion of Xi at the mean values of the measured
strains in a truncated Taylor series gives

X i ffi GiðY Þ þ
Xn

k¼1

ðY k � Y kÞ
qGi

qY k

����
Y

. (19)

It is noted that the gradients qGi

qY k
jY are evaluated at the

mean values of the measured strains. The determination of
the gradients can be accomplished using the perturbation
technique in which the differential changes of the elastic
to F ¼ 3N

��y (10�4)

.V. Specimen no. Measured Average C.O.V.

1 �2.819 (+2.9%) �2.858 (+4.3%) 1.2%

2 �2.868 (+4.7%)

3 �2.887 (+5.4%)

1 �2.023 (+1.2%) �2.048 (+2.5%) 1.5%

2 �2.081 (+4.1%)

3 �2.039 (+2.0%)

measured strains.
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constants induced by the differential change of each
measured strain are determined using the present identifi-
cation method, and the finite difference method is used
to calculate the gradients of the elastic constants with
respect to the measured strain having the imposed
differential change. For instance, the new set of measured
strains ðY 1 þ DY 1;Y 2Þ is used to identify the elastic
constants X i þ DX i using the present elastic constants
identification method. The gradients qGi

qY 1
jY are then

approximated as DX i

DY 1
via the finite difference approach.

The first-order approximation to the variance of each
elastic constant is

var½X i� ffi
X2
k¼1

qGi

qY k

����
Y

� �2

var½Y k�; i ¼ 1; 2; (20)

where var[ � ] is the variance of the random variable in the
brackets.

6. Results and discussion

The aforementioned two-level optimization method will be
applied to the material characterization of laminated compo-
site materials using two symmetric angle-ply beams. The
upper and lower bounds of the material constants for different
composite materials are chosen based on experience.

Graphite/epoxy:

0oE1o1000GPa; 0oE2o50GPa,

0oG12o20GPa; 0:1on12o0:5; ð21Þ

glass/epoxy:

0oE1o300GPa; 0oE2o30GPa,

0oG12o20GPa; 0:1on12o0:5.
Table 3

Identified material constants of the graphite/epoxy [(451/�451)6]s beam at the

Starting point no. Stage Material constant

E1 (GPa) E2 (GPa)

1 Initial 435.43 10.71

Final 129.70 18.75

2 Initial 306.25 4.27

Final 129.70 18.75

3 Initial 74.50 4.47

Final 129.70 18.75

4 Initial 523.17 41.81

Final 129.70 18.75

5 Initial 837.38 45.83

Final 129.70 18.75

6 Initial 685.09 14.82

Final 129.70 18.75

Global minimum 129.70 (11.5%)a 18.75 (103

aValue in parentheses denotes percentage difference between identified and
The modified design variables of Eq. (12) are obtained via
the use of the following normalization factors:

a1 ¼ 1000; a2 ¼ 100; a3 ¼ 10; a4 ¼ 1. (22)

The values of the amplification factor x in Eqs. (9) and (16)
are set to be 106. It is noted that the use of the above values
for the normalization and amplification factors can help
increase the convergence rate of the solution. A number of
numerical examples on the material constants identifica-
tions of graphite/epoxy and glass/epoxy composite lami-
nates are first given to study the accuracy and feasibility of
the proposed method. In the numerical study of the
material characterization of graphite/epoxy composite
laminates, the actual strains in Table 1 are treated as the
‘‘measured’’ strains for identifying the actual material
constants given in Eq. (17). The ‘‘measured’’ strains of the
[(451/�451)6]s beam in Table 1 are used as an example to
show the process of identifying the material constants in
the first-level optimization problem. In this case, six
starting points are randomly generated in getting the
global minimum with probability exceeding 0.998. The
numbers of iterations required for identifying the lowest
local minima for the starting points and the material
constants identified at the global minimum are tabulated in
Table 3. It is noted that the exact values of G12 and n12 can
be obtained for all the starting points with numbers of
iterations less than or equal to 21 in the solution of the
first-level optimization problem. This implies that the use
of only one randomly generated starting point is enough to
identify G12 and n12 for the [(451/�451)6]s beam. It is also
worth studying the results which will be obtained when
the angle-ply beam with other fiber angle is used in the
first-level optimization problem. Table 4 lists the identi-
fied material constants and their associated errors for the
first-level optimization

No. of iterations

G12 (GPa) n12

11.24 0.43 9

6.84 0.30

17.98 0.26 20

6.84 0.30

12.75 0.39 18

6.84 0.30

15.66 0.24 19

6.84 0.30

9.36 0.45 10

6.84 0.30

8.54 0.35 21

6.84 0.30

.4%) 6.84 (0%) 0.30 (0%) Probability 0.999417

actual data.
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Table 4

Identified material constants using the actual strains of the graphite/epoxy

[(y1/�y1)6]s beams at the first-level optimization

Fiber

angle y
Identified material constant

E1 (GPa) E2 (GPa) G12 (GPa) n12

151 151.65

(3.5%)a
14.59

(58.2%)

1.94

(71.6%)

0.32 (6.7%)

301 185.32

(26.5%)

31.69

(243.7%)

3.12

(54.4%)

0.31 (3.3%)

451 129.70

(11.5%)

18.75

(103.4%)

6.84

(0%)

0.30 (0%)

601 No global minimum

aValue in parentheses denotes percentage difference between identified

and actual data.

Table 5

Data for material characterization of glass/epoxy angle-ply beams subject

to F ¼ 1N

Material constantsa Beam layup Actual strain

ex (10�5) ey (10�5)

E1 ¼ 38.6GPa [(151/�151)6]s 8.957 �3.904

E2 ¼ 8.27GPa [(301/�301)6]s 13.86 �8.908

G12 ¼ 4.14GPa [(451/�451)6]s 24.04 �12.36

n12 ¼ 0.26 [(601/�601)6]s 32.96 �8.908

aData from Swanson [14].

Table 6

Identified material constants using measured strains of the graphite/epoxy

[(451/�451)6]s beams at the first-level optimization

Specimen

no.

Identified material constant

E1 (GPa) E2 (GPa) G12 (GPa) n12

1 139.96

(4.5%)a
18.93

(105.3%)

6.75

(1.3%)

0.296 (1.3%)

2 154.41

(5.4%)

19.19

(108.1%)

6.74

(1.5%)

0.297 (1%)

3 145.02

(1.0%)

19.02

(106.3%)

6.65

(2.8%)

0.297 (1%)

Average

strain

146.21

(0.2%)

19.04

(106.5%)

6.71

(1.9%)

0.297 (1%)

C.O.V. 5% 0.7% 0.8% 0.2%

aValue in parentheses denotes percentage difference between identified

and actual data.
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angle-ply beams under consideration. It is noted that
except the [(451/�451)6]s composite beams none of the
adopted symmetrically laminated composite beams are
able to identify the exact values of G12 and n12. At the
second-level optimization, the estimates of G12 and n12
identified in the previous level of optimization using the
[(451/�451)6]s beam are kept constant during the mini-
mization process and the material constants E1 and E2 are
identified using the ‘‘measured strains’’ of the angle-ply
beam with fiber angle different from 451. In solving the
second-level optimization problem, the multi-start global
minimization procedure is again used to randomly generate
a number of starting points for the chosen angle-ply beam,
search for the lowest local minima from the starting points,
and identify the global minimum with probability greater
than or equal to 0.998. It has been shown that all the
adopted symmetric angle-ply beams can produce the exact
estimates of E1 and E2 in an effective and efficient way.
Next, consider the material characterization of glass/epoxy
composite beams. The material constants, layups, and
actual strains of the glass/epoxy beams used in the
numerical study are listed in Table 5. It has been shown
that amongst the adopted angle-ply beams, only the [(451/
�451)6]s beam can produce the exact values of G12 and n12
at the first-level optimization. On the other hand, all the
symmetric angle-ply beams with fiber angles different from
451 under consideration can produce the exact values of E1
and E2 at the second-level optimization. It is thus obvious
that the present two-level optimization method is capable
to produce excellent identification of the material constants
for different composite materials if the measured strains of
the [(451/�451)6]s beam and another symmetric angle-ply
beam with fiber angle different from 451 are used to solve
the first- and second-level optimization problems, respec-
tively. For illustration purpose, the optimization algorithm
DBCONF of IMSL [18] has also been used to solve the
one-level optimization problem of Eq. (8) as well as the
two-level minimization problem of Eqs. (9) and (16). It has
been shown that for the cases which have been studied
before, the optimization algorithm DBCONF is unable to
make the solutions converge and thus no results are
obtained.
The present method is now used to identify the material

constants of the symmetric angle-ply beams which have
been tested. The measured strains of each of the [(451/
�451)6]s beams as well as their average values in Table 2 are
used separately at the first-level optimization to identify
G12 and n12. The identified estimates of G12 and n12 using
different sets of measured strains are listed in Table 6. It is
noted that excellent estimates of G12 and n12 with
percentage differences less than or equal to 2.8%. In
particular, the percentage differences of the estimates of
G12 and n12 obtained using the average measured strains
are 1.9% and 1%, respectively. At the second-level
optimization, the values of G12 and n12 are set as
6.71GPa and 0.297, respectively, which have been deter-
mined from the [(451/�451)6]s beam at the previous level
using the average measured strains while E1 and E2 are
identified using different sets of measured strains of the
[(601/�601)6]s beams given in Table 2. The identified
estimates of E1 and E2 at this level are listed in Table 7.
Again it is noted that all the adopted sets of measured
strains can produce excellent estimates of E1 and E2 with
percentage differences less than 7.4%. In particular, the
percentage differences of the estimates of E1 and E2

obtained using the average measured strains are 0.1%
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Table 7

Identified E1 and E2 using different measured strains of the graphite/epoxy

[(601/�601)6]s beams at the second-level optimization

Specimen no. Identified elastic constant

E1 (GPa) E2 (GPa)

1 137.44 (6.2%)a 9.10 (1.3%)

2 153.47 (4.8%) 8.54 (7.4%)

3 149.25 (1.9%) 9.21 (0.1%)

Average strain 146.71 (0.1%) 8.95 (2.9%)

C.O.V. 5.7% 4%

aValue in parentheses denotes percentage difference between identified

and actual data.
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and 2.9%, respectively. It is worth mentioning that the use
of the other sets of the estimates of G12 and n12 in Table 6 at
the second-level optimization can also produce excellent
estimates of E1 and E2. Furthermore, the C.O.V.s of the
identified elastic constants calculated using the sample data
in Tables 6 and 7 are around 0.8%, 0.2%, 5.7%, and 4.0%
for G12, n12, E1, and E2, respectively. The small C.O.V.s
obtained for the identified elastic constants have thus
further demonstrated the accuracy and repeatability of the
present identification technique. For comparison purpose,
two cases are given to further illustrate the merits of the
present elastic constants identification method. In the first
case, the one-level optimization problem of Eq. (8) is
solved using the present multi-start global minimization
technique together with the four average measured strains
of the [(451/�451)6]s and [(601/�601)6]s beams given in
Table 2. The solution of the one-level minimization
problem produces the percentage differences of 13.5%,
2.2%, 1.9%, and 35% for E1, E2, G12, and n12, respectively.
The relatively high percentage differences produced in the
estimations of E1 and n12 have demonstrated the fact that
the elastic constants identified from the one-level mini-
mization problem of Eq. (8) are very sensitive to
measurement noise. The second case has been considered
in Ref. [13] in which the axial, lateral, and shear strains
measured from the graphite/epoxy [(451/�451)6]s beam
have been used to identify the four elastic constants of the
graphite/epoxy composite material. The percentage differ-
ences of the estimates of E1, E2, G12, and n12 obtained in the
previous study were 6.3%, 3.9%, 3.5%, and 0%, respec-
tively. When comparing with the identified elastic constants
in Tables 6 and 7, it is noted that the percentage differences
for the estimates of E1, E2, and G12 produced by the present
method are lower than those produced by the previous
method. Especially for the estimate of E1, the percentage
differences obtained by the present and previous methods
are 0.1% and 6.3%, respectively. Therefore, it has further
demonstrated that the present two-level optimization
procedure has better capability to produce accurate
estimates of elastic constants for composite materials than
the aforementioned identification methods.
Finally, the effects of uncertainties encountered in strain
measurements on the variations of the identified elastic
constants are studied using the aforementioned sensitivity
analysis. The C.O.V.s of the measured strains are assumed
to be 2% in the sensitivity analysis of the elastic constants
for the graphite/epoxy beams given in Table 1. It has been
shown that at the first level of optimization, the theoretical
C.O.V.s of the identified G12 and n12 obtained using the
[(451/�451)6]s beam are 1.46% and 0.24%, respectively.
Such small effects on the variations of the identified G12

and n12 induced by the strain variations have also been
observed in Table 6 where the experimental C.O.V.s of the
identified G12 and n12 are 0.8% and 0.2%, respectively. At
the second level of optimization, it has been shown that
different symmetric angle-ply beams with fiber angles
different from 45o produce different theoretical C.O.V.s
for the identified E1 and E2. Among the symmetric angle-
ply beams under consideration, the [(151/�151)6]s beam can
produce the smallest C.O.V.s of 2.2% and 3.9% for the
identified E1 and E2, respectively. Therefore, it is recom-
mended that the [(451/�451)6]s and [(151/�151)6]s beams be
used at the first and second levels of optimization,
respectively, in the present procedure to identify the elastic
constants of laminated composite beams.

7. Conclusions

A two-level optimization procedure for the identification
of four material constants of fiber-reinforced composite
materials using four strains measured from two symmetric
angle-ply beams with different fiber angles subjected to
three-point-bending testing has been presented. In the
proposed method, a [(451/�451)6]s beam and a symmetric
angle-ply beam with fiber angle different from 451 have
been used, respectively, at the first-level optimization to
identify G12 and n12 and at the second-level optimization to
identify E1 and E2. A number of numerical examples on the
material characterization of graphite/epoxy and glass/
epoxy beams have been given to demonstrate the capability
and accuracy of the present method in identifying the
material constants of laminated composite materials. The
theoretical study has shown that the present method can
produce exact estimates of the material constants for the
beams made of different composite materials in an efficient
and effective way. Static three-point-bending tests of
several [(451/�451)6]s and [(601/�601)6]s composite beams
have been performed to measure the axial and lateral
strains of the composite beams, along with the experi-
mental data used to study the feasibility and accuracy of
the present method. The experimental study has also
shown that the use of [(451/�451)6]s and [(601/�601)6]s in
the first and second levels of optimization problems of the
present method can produce good estimates of the elastic
constants for the laminated composite beams in an
effective and efficient way. The percentage differences in
the identification of material constants G12, n12, E1, and E2

are less than or equal to 2.9% for the case where the
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average measured strains of the [(451/�451)6]s and [(601/
�601)6]s composite beams are used at the first and
second levels of optimization, respectively. A sensitivity
analysis has been given to show that the use of a [(151/
�151)6]s beam in solving the second-level optimization
problem of the present procedure can identify E1 and E2

with less variations. The present method has the potential
to become a useful tool for the determination of material
constants.
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